Subject:
Mechanics is the most important subject area of physics. It is the basis of physics. Thermodynamics, on the contrary, is one of several less important specialties. This is the widespread opinion. It can be seen when considering curricula, degree programs and text books. A typical course for a teaching degree for the secondary school comprehends 6 contact hours per week of mechanics, but only 2,5 hours of thermodynamics. The ratio is similar for the number of pages in textbooks for the secondary school and for the university.

Often it is said explicitly that mechanics has an outstanding importance. In a secondary school book we found in the context of the equation $F = m \cdot a$:

“This is really the most important statement in this book; it has changed the world since 1686.”

Deficiencies:
Thermodynamics is not only much shorter than mechanics in the teaching curriculum. Moreover, what is provided in the curriculum is often not fulfilled. According to the school curriculum usually it should be treated in the 11th grade, after mechanics, i.e. during the rest of the school year. However, in the turbulence of the end of the school year thermodynamics is often sacrificed. The situation is similar at the university. Often thermodynamics is taught in a one-semester course together with optics. One begins with optics but then time is running out and thermodynamics holds the short end of the stick. As a consequence many students leave the school and also the university as thermodynamic illiterates.

From today's perspective, mechanics does not deserve this preferential position, and thermodynamics does not deserve its bad reputation.

Why should just the equation $F = m \cdot a$ be so important? It is essentially Newton's second law, namely $F = dp/dt$, which expresses the conservation of momentum. But the conservation of momentum is not unique; there are similar laws for energy, angular momentum and electric charge. And the series also includes the law that makes a statement about the non-conservation of entropy: entropy can be created but not destroyed.

Origin:
We cannot express it more clearly than it was done in 1883 by Ernst Mach:

“When the french Encyclopaedists of the 18th century believed to be near to their aim to explain the whole of nature physico-mechanically, when Laplace imagines an intelligent demon which would be able to predict the course of the world in all future times from the only knowledge of the initial positions and velocities, this joyful over-estimation of the extent of the physical and mechanical insights was forgivable in the 18th Century; it is indeed a gracious, noble, edifying drama, and we can easily share the joy.
But a century later, after we have become more prudent, the vision of the Encyclopaedists appears to us as a mechanical mythology in comparable to the ancient animistic religions. Both views contain undue and fantastic exaggerations of a one-sided knowledge.”

Disposal:

It is not easy, since there is a long teaching tradition. One might begin the deconstruction of mechanics by cutting back kinematics.

Friedrich Herrmann, Karlsruhe Institute of Technology